Examination of Higher Order Epistasis and Fitness Peaks through Analysis of 4-Locus Fitness Graphs

Mengming Luo

February 1, 2019

Outline

- Background
- Goal
- Applications/Importance
- Theorems
- Results and Conclusions

Basic Terminology

- Loci
- Alleles
- Genotype
- Phenotype

Allele for white flowers

Terminology

Terminology

- Example 2-locus system
(1) Locus A - circle color
(2) Locus B - rectangle color
- Set of alleles
(1) $\Sigma=\{0,1\}$
- Genotype space
(1) $\Sigma^{2}=\{00,01,10,11\}$.
- Fitness
(1) Expected reproductive success of genotype g

Fitness Landscapes and Graphs

- Quantitative tools
- Fitness landscapes
(1) Function $w: \Sigma^{n} \rightarrow \mathbb{R}$
(2) Assigns a fitness value w_{g} to each genotype g in Σ^{n}
- Fitness Graphs
(1) Visual representations of fitness landscapes

Example 2-locus graph

- Mutational neighbors have arrows between them, representing evolutionary pathways
- The arrowhead points to the genotype with greater fitness.
- Peaks
- This example is 'additive'

Partial Orders

- An order that does not include relations between every genotype
- Example:
(1) $w_{11}>w_{10}>w_{00}$
(2) $w_{11}>w_{01}>w_{00}$
- Offers no information on w_{10} 's relation to w_{01}.
- Rank orders offer relations between every genotype

Epistasis

- Occurs when one gene's expression is affected by interaction with a gene at another locus
- The fitness of a multiple mutant is unexpected given the fitness of the wild type and all single and double mutants.
- example: good + good $=$ bad
- Implied epistasis
- Higher order epistasis
(1) Pairwise epistasis
(2) n-way epistasis

Goal

- Develop a characterization of n-locus graphs implying higher-order epistasis
- Apply the characterization to various 4-locus graphs and examine the relationship between number of peaks and higher-order epistasis

Applications/Importance

- Antibiotic Resistance
- Occurs when population of microbes evolves to resist an antibiotic that previously worked
- Demand for new antibiotics, higher medical costs, and higher rates of mortality
- Recent treatment plans use quantitative tools such as fitness graphs to approach the design of drug-cycling trials

Bipartite Graphs

- $G=(V, E)$ is bipartite if $E \neq \emptyset$ and if V can be partitioned into two disjoint subsets A and B, i.e., $V=A \cup B$ and $A \cap B=\emptyset$, such that for every edge $e \in E, e=\left(v_{1}, v_{2}\right)$, where $v_{1} \in A$ and $v_{2} \in B$
- Perfect matching - A subset of the edges that pairs every node in A with a different node in B.

Hall's Marriage Theorem

Given a finite bipartite graph $G=(V, E)$ with the bipartition $V=A \cup B, A \cap B=\emptyset,|A|=|B|$,
the graph G has a perfect matching if and only if for every subset $S \subseteq A,|N(S)| \geq|S|$, where

$$
N(S)=\{b \in B, \text { there exists } a \in S \text { with }(a, b) \in E\} .
$$

Illustration: Hall's Marriage Theorem

Bipartition of women and men. Edges connect women to men they want to marry.

Illustration: Hall's Marriage Theorem

Anne

$$
\mathrm{S}=\{\text { Sara, Jill }\}, \mathrm{N}(\mathrm{~s})=\{\text { Bob }\} .|N(S)|<|S|
$$

Illustration: Hall's Marriage Theorem

Add new edge to increase $|N(S)|$

Illustration: Hall's Marriage Theorem

Illustration: Hall's Marriage Theorem

Perfect Matching $=$ Happy Marriage

Even/Odd Genotypes

- Even genotypes have an even number of '1's
(1) Ex: 11
- Odd genotypes have an odd number of '1's
(1) Ex: 10
- All nodes in a fitness graph are adjacent 01 to only mutational neighbors
- Mutational neighbors differ by only one bit
- All even genotypes are mutations neighbors with only odd genotypes, and vice versa
- Thus all fitness graphs are bipartite even/odd bipartition

Epistasis (ϵ)

- Epistasis is measured by deviance from additive fitness

$$
\epsilon_{n}=\sum_{g \in \Sigma^{n}}(-1)^{g} w_{g}=\sum_{j_{1}=0}^{1} \sum_{j_{2}=0}^{1} \cdots \sum_{j_{n}=0}^{1}(-1)^{j_{1}+j_{2}+\cdots+j_{n}} w_{j_{1} j_{2} \ldots j_{n}}
$$

- For example, in a biallelic 2-locus system,

$$
\epsilon_{2}=w_{00}-w_{01}-w_{10}+w_{11}
$$

- Note: In an additive 2-locus system,

$$
\begin{gathered}
\left(w_{11}-w_{00}\right)=\left(w_{01}-w_{00}\right)+\left(w_{10}-w_{00}\right) \\
w_{11}-w_{00}=w_{01}+w_{10}-2 w_{00} \\
w_{11}-w_{00}-\left(w_{01}+w_{10}-2 w_{00}\right)=0 \\
w_{11}-w_{00}-w_{01}-w_{10}+2 w_{00}=0 \\
w_{11}+w_{00}-w_{01}-w_{10}=0
\end{gathered}
$$

Characterization

Partition Condition

A n-locus fitness graph G implies negative n-way epistasis
if and only if there exists a partition of 2^{n-1} disjoint pairs $\left\{o_{j}, e_{j}\right\}$ for all genotypes in Σ^{n} such that

$$
w_{o_{j}}>w_{e_{j}} \text { for all } j=1,2, \cdots, 2^{n-1} .
$$

$$
\epsilon_{n}=\sum_{g \in \Sigma^{n}}(-1)^{g} w_{g}=\sum_{j_{1}=0}^{1} \sum_{j_{2}=0}^{1} \cdots \sum_{j_{n}=0}^{1}(-1)^{j_{1}+j_{2}+\cdots+j_{n}} w_{j_{1} j_{2} \ldots j_{n}} .
$$

Note all even genotypes have positive coefficients while all odd genotypes have negative coefficients.

Characterization: Example - Implies Epistasis

Edges where the odd genotype has greater fitness are in red. Bolded edges are part of the partition/perfect matching.

Characterization: Example - Does Not Imply Epistasis

Edges where the odd genotype has greater fitness are in red. Dashed lines: there is no partition/perfect matching where $w_{o j}>w_{e j}$ because there exists an $S_{o}=\{1101,1110\} \subseteq V_{o}$ s.t. $\left|S_{o}\right|>\left|N\left(S_{o}\right)\right|$.

Results

\# Peaks	\# Graphs	2-way	3-way	4-way
8	1	0	0	1
7	4	0	1	3
6	59	1	10	48
$6-8$	64	1	11	52

$\#$ Peaks	4-way interactions
$6-8$	81%
5	50%
4	15%
3	10%
2	10%
1	5%
All graphs	9%

Conclusions

- A greater number of peaks is correlated with a higher chance of implying higher-order epistasis
- Evolving populations may end up "stuck" at a peak
(1) Multiple peaks, more likely to get stuck at a "suboptimal" peak, decreasing overall population fitness
- More peaks results in lower predictability

Further Study

- Application of characterization to other n-locus graphs
- Larger sample size for statistical analysis
- Practical analyses on populations for which there is little information on fitness rank orders
(1) Only information on partial orders
- Possible applications to data obtained from genome-wide association studies

Summary

- Developed a characterization of fitness graphs that imply higher-order epistasis based on Hall's Marriage Theorem
- Used that characterization to determine that higher order epistasis seems to correlate to the number of peaks in a graph

Acknowledgements

Thank you to...

Kristina Crona, mentor

Devin Greene, programmer

Ms. Bosse, SRP Teacher

